Fasting in Ramadān

S. M. Bakir, MBChB, MSc, PhD,
Riyadh, Saudi Arabia

Abstract
This article reviews research that has been done on fasting during the holy month of Ramadān. In certain instances conflicting results have been reported.

Key words: Fasting, Ramadān, metabolic effects

Fasting was prescribed before Islam, by other religions and even atheists. In Islam, fasting in the holy month of Ramadān means abstinence from food, drink and sex from dawn to sunset. This averages about 15 hours daily for one lunar month. This is one of the five pillars of Islam. Exemption from fasting is allowed for travellers, the sick, for pregnant, menstruating, or lactating women, and youngsters before puberty. Travellers may fast when they return to their homes. The sick should consult their doctor to see if fasting could have an adverse effect on their condition.

Research about the effects of fasting in Ramadān is scanty and so controversy about the effects of fasting in Ramadān exists.

In 1961, Khaleque et al. studied the eosinophil count as an index of emotional stress, and showed that fasting in Ramadān, especially on the first day where the greatest change in life style occurs, is not associated with a significant change in the eosinophil count. They, therefore, concluded that fasting is not a form of stress with emotional disturbance.

Regarding the metabolic effects of fasting in Ramadān, Gumaa et al. in 1978 reported an increase in uric acid and triglyceride. They attributed the increase in uric acid secondary to that of the lipid while there was a decrease in cholesterol. On the other hand, in 1982, Fedail et al. reported a significant increase in the levels of total serum cholesterol and uric acid, and significant fall in body weight without a significant change in total serum triglycerides. Shoukry and Hazmi et al. also reported an increase in plasma cholesterol as well as cholesterol concentrations in the low density lipoproteins (LDL) and the very low density lipoprotein (VLDL).

Fluid and electrolyte balance were studied by Mustafa and his colleagues in 1978. They showed a decrease in total excretion of sodium, particularly during the day. Although energy deprivation leads to natriuresis, they attributed this to the effect of ADH in dehydrated subjects described by Leaf et al. They also found an insignificant change in the levels of serum osmolality in spite of an increase in the urine concentration, and a decrease in urine volume by day with the retention of salt.

The problem of diabetes mellitus has been studied more intensively. The studies in Birmingham have shown little change in a fasting Muslim's diabetic control, a low attendance to a diabetic clinic, and no increase in the incidence of admission to hospitals for uncontrolled diabetes during Ramadān.

Khooger et al. in 1987 studied 52 diabetics, 20 insulin dependents (IDD) and 32 non-insulin dependents (NIDD). Among the NIDD, 15 patients lost weight and their glucose levels were lower than prefasting levels. Among the IDD, one group had a
In a comprehensive appraisal by Sulimani et al, some precautions were made regarding those diabetics who should be advised not to fast. This included those who were:

1. prone to ketosis
2. brittle with wide swings in blood glucose
3. pregnant
4. young children with diabetes
5. having serious complications, eg., renal insufficiency or ischemic heart disease
6. having serious illnesses, eg., severe sepsis or congestive heart failure.

Patients on chronic hemodialysis were studied by Khader et al. No significant changes were seen in plasma urea, creatinine, sodium, bicarbonate, phosphorus, and calcium, but there was a significant rise in potassium during Ramadân due to an excessive intake of potassium rich fluids after breaking the fast.

A significant increase in serum thyroxine was reported by Fedail et al during fasting while Sulimani showed that there were no significant differences in the thyroid function tests, including plasma T4, T3, free T4, and TSH before and after fasting, although such women are exempted from fasting. The study did not show a negative fluid balance initially and attributed this to a more humid atmosphere than in Sudan.

Abbas et al in 1986, studied the effects of a Ramadân fast on male fertility. They showed there was an improvement in sperm count, gonadotrophic hormone levels and testosterone in healthy men, while the seminal quality of azoospermic stayed the same. There was a significant rise in LH during Ramadân due to an excessive intake of potassium rich fluids after breaking the fast.

A significant increase in serum thyroxine was reported by Fedail et al during fasting while Sulimani showed that there were no significant differences in the thyroid function tests, including plasma T4, T3, free T4, and TSH before and after fasting, although such women are exempted from fasting. The study did not show a negative fluid balance initially and attributed this to a more humid atmosphere than in Sudan.

Abbas et al in 1986, studied the effects of a Ramadân fast on male fertility. They showed there was an improvement in sperm count, gonadotrophic hormone levels and testosterone in healthy men, while the seminal quality of azoospermic stayed the same. There was a significant rise in LH during Ramadân due to an excessive intake of potassium rich fluids after breaking the fast.

A significant increase in serum thyroxine was reported by Fedail et al during fasting while Sulimani showed that there were no significant differences in the thyroid function tests, including plasma T4, T3, free T4, and TSH before and after fasting, although such women are exempted from fasting. The study did not show a negative fluid balance initially and attributed this to a more humid atmosphere than in Sudan.

Abbas et al in 1986, studied the effects of a Ramadân fast on male fertility. They showed there was an improvement in sperm count, gonadotrophic hormone levels and testosterone in healthy men, while the seminal quality of azoospermic stayed the same. There was a significant rise in LH during Ramadân due to an excessive intake of potassium rich fluids after breaking the fast.

Another study conducted without adequate controls.

2. Dietary composition and overeating: What happens after breaking the fast has not been fully stressed. Fasting is associated with an adaptive response in circulating substrates and hormones. A reduced sympathetic activity permits the body to adapt to the low intake of energy. Refeeding may lead to a reduction, at least temporarily, in the capacity of the cells to utilize lipids from the circulating lipoproteins. Therefore, the elevation in lipids seen during fasting may be due to overeating after breaking the fast. Again, the controversial results of thyroid function tests could well be explained as being the result of variation in dietary composition.

3. While fasting is more or less standard, what people eat after breaking their fast has to be investigated.

4. It has also been noticed that environmental factors such as the degree of humidity may affect the results and/or the interpretation. We have seen that in Sudan a negative fluid balance was observed initially, while in Malaysia this did not take place.

5. Regarding the effect of fasting on pregnancy and lactation, one ought to know that women who are pregnant on lactating are exempted, no matter how the social environment encourages them.
Perhaps the sad outcome of pregnancy in the West African village reflects the wisdom of the Islamic teaching, especially at later stages of pregnancy.

6. As for those Muslims who fast during the holy month of Ramadān and who are taking medicines, the importance of sticking to the medicine with a sympathetic understanding by the physician, probably helps them to perform a religious duty. Also, finding alternatives for them in spreading their medicines after they break their fast could possibly be arranged.

7. Collaborative efforts from fasters, Muslim scholars and physicians (Muslim and non-Muslim) are required for patients who are at risk. Fasting disciplines the physical and moral injunctions and it develops tolerance and patience; therefore, the moral and physical benefits require accurate and controlled studies. Moreover, Islamic teaching from the Holy Qur'ān and the Sunnah should not be tested.

Acknowledgement

I would like to thank Dr. Omar Karar, assistant professor of biochemistry, for his constructive comments, and Mr. Mohammad Akram for typing this paper.

References: